Oligomeric Flavanoids. Part 3.† Structure and Synthesis of Phlobatannins Related to (-)-Fisetinidol-($4 \alpha, 6$)- and ($4 \alpha, 8$)-(+)-catechin Profisetinidins

Jan P. Steynberg, Johann F. W. Burger, Desmond A. Young, Edward V. Brandt, Jacobus A. Steenkamp, and Daneel Ferreira*
Department of Chemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein, 9300 South Africa

Abstract

Several members of the novel class of natural 'phlobaphene' condensed tannins, representing the products of c-ring isomerization of 2,3-trans-3,4-trans-(-)-fisetinidol units present in (4,6)- and $(4,8)$-biflavanoid profisetinidins, have been characterized by ${ }^{1} \mathrm{H}$ n.m.r. n. O.e. difference spectroscopy. These include the functionalized 8,9-trans-9,10-cis-tetrahydropyrano[2,3-h]chromenes (9) and (12), and the $[2,3-f]$ - and $[2,3-g]$ regioisomers (14) and (19). Since the ($4 x, 8$)-biflavanoid (1) is subject to extensive base-catalysed rearrangement and epimerization, the protected $4-O$-methyl ethers (ε-ring) (2) and (6) were utilized to confirm the proposed structures of phlobatannins by stereospecific c-ring isomerization of (2) and (6) under basic conditions.

The natural occurrence of the novel class of c-ring isomerized condensed tannins, termed phlobatannins, and their biomimetic synthesis via facile nucleophilic displacement of resorcinol aring by phloroglucinol D -ring functionality under mild alkaline conditions have recently been demonstrated. ${ }^{1,2}$ These functionalized mono- and di-pyranochromenes represent products of stereospecific ring isomerization of $(2 R, 3 S)$ - 2,3 -trans-flavan3 -ol units present in 'conventional' (4,8)-bi- and (4,6:4,8)-triflavanoid profisetinidins. Continued investigations of two species of the Caesalpiniodeae, Guibourtia coleosperma (false mopane) ${ }^{3}$ and Baikiaea plurijuga (Rhodesian teak) ${ }^{3}$ have revealed more extensive structural and stereochemical diversity

Results and Discussion

The four (-)-fisetinidol-(+)-catechins (1), (3), (5), and (7), derived from $(+)$-mollisacacidin $[(2 R, 3 S, 4 R)$-2,3-trans-3,4-cis$3^{\prime}, 4^{\prime}, 7$-trihydroxyflavan-3-ol] and (+)-catechin [($2 R, 3 S$)-2,3-trans-3', $4^{\prime}, 5,7$-tetrahydroxyflavan- 3 -ol $]^{4.5}$ are accompanied in the heartwoods of G. coleosperma and B. plurijuga by a series of functionalized tetrahydropyrano $[2,3-h]-$, $[2,3-g]-$, and $[2,3-$ f]chromenes which presumably originate from the conventional dimers via appropriate c-ring isomerizations. Only those possessing trans-cis configurations of ring c, i.e. the [2,3-h]-(9) and (12) $[2,3-g]-(19)$, and $[2,3-f]-(14)$ isomers will be dealt with in this paper. \ddagger These compounds have been identified by means

(1)

$$
\begin{align*}
& \xi \equiv, R^{1}=H \tag{5}\\
& \xi \equiv, R^{1}=M e \tag{6}\\
& \xi \equiv \mathbb{D}, R^{1}=H \tag{7}\\
& \xi \equiv \mathbb{M e}, R^{1}=M e \tag{8}
\end{align*}
$$

amongst these compounds than were previously anticipated. We thus now disclose our detailed results of relevance to those naturally occurring and synthetic phlobatannins originating from (-)-fisetinidol- $(4 \alpha, 6$) and ($4 \alpha, 8)-(+)$-catechin biflavanoids.

[^0]of the spectroscopic data of their heptamethyl ether diacetates, e.g. (10), and the structures confirmed by synthesis. Their ${ }^{1} \mathrm{H}$ n.m.r. spectra at 300 MHz are characterized by the conspicuous absence of the effects of dynamic rotational isomerism at ambient temperatures when compared to those of the corresponding derivatives of their biflavanoid precursors. ${ }^{6}$

The structure of the 8,9-trans-9,10-cis-3,4,9,10-tetrahydro$2 \mathrm{H}, 8 \mathrm{H}$-pyrano[2,3-h]chromene (9) was established by application of ${ }^{1} \mathrm{H}$ nuclear Overhauser effect (n.O.e.) difference spectroscopy of its heptamethyl ether diacetate $(10)\left(J_{8,9} 10.0\right.$,

Table. ${ }^{1} \mathrm{H}$ N.m.r. peaks (p.p.m.) of the tetrahydropyranochromene heptamethyl ether diacetates (10), (13), (15), (18), and (20) in $\mathbf{C D C l} \mathbf{l}_{3}\left(23{ }^{\circ} \mathrm{C}\right)$ at 300 MHz . Splitting patterns and J values (Hz) are given in parentheses

Ring	Proton	(10)	(13)	(15)	(18)	(20)
A^{a}	3	6.32 (d, 2.5)	6.49 (d, 2.5)	6.46 (d, 2.5)	6.46 (d, 2.5)	6.47 (d, 2.5)
	5	6.37 (dd, 2.5, 8.5)	6.44 (dd, 2.5, 8.5)	6.42 (dd, 2.5, 8.5)	6.40 (dd, 2.5, 8.5)	6.41 (dd, 2.5, 8.5)
	6	6.82 (d, 8.5)	6.91 (d, 8.5)	6.82 (d, 8.5)	6.82 (d, 8.5)	6.81 (d, 8.5)
$\mathrm{B}^{\text {a }}$	2	6.89 (d, 2.0)	6.86 (d, 2.0)	6.79 (d, 2.0)	6.81 (d, 2.0)	6.89 (d, 2.0)
	5	6.79 (d, 8.5)	6.79 (d, 8.5)	6.77 (d, 8.5)	6.77 (d, 8.5)	$6.78{ }^{\text {b }}$ (d, 8.0)
	6	6.91 (dd, 2.0, 8.5)	6.90 (dd, 2.0, 8.5)	6.86 (dd, 2.0, 8.5)	6.87 (dd, 2.0, 8.5)	6.85 (dd, 2.0, 8.0)
C	8/6	4.96 (d, 10.0)	4.96 (d, 10.0)	4.95 (d, 10.0)	4.95 (d, 10.0)	4.99 (d, 10.5)
	9/7	5.50 (dd, 6.0, 10.0)	5.51 (dd, 6.0, 10.0)	5.31 (dd, 5.5, 10.0)	5.34 (dd, 5.5, 10.0)	5.42 (dd, 6.0, 10.5)
	10/8/6	5.08 (d, 6.0)	5.04 (d, 6.0)	5.06 (d, 5.5)	5.08 (d, 5.5)	5.13 (d, 6.0)
D		6.17 (s)	6.19 (s)	6.11 (s)	6.17 (s)	6.45 (s)
$E^{\text {a }}$	2	6.72 (d, 2.0)	6.42 (d, 2.0)	6.91 (d, 2.0)	7.04 (d, 2.0)	6.87 (d, 2.0)
	5	6.75 (d, 8.0)	6.61 (d, 8.5)	6.84 (d, 8.0)	6.84 (d, 8.5)	$6.82{ }^{\text {b }}$ (d, 8.0)
	6	6.68 (dd, 2.0, 8.0)	6.26 (dd, 2.0, 8.5)	6.94 (dd, 2.0, 8.0)	6.95 (dd, 2.0, 8.5)	6.90 (dd, 2.0, 8.0)
F	2	4.63 (d, 7.0)	4.90 (br s, ca. 1.0)	4.96 (d, 8.0)	5.04 (br s, ca. 1.0)	5.07 (d, 6.0)
	3	5.21 (m)	5.20 (m)	5.37 (m)	5.41 (m)	5.31 (m)
	$4_{a x}$.	2.58 (dd, 7.0, 16.0)	2.88 (m)	2.69 (dd, 8.0, 16.5)	2.92 (dd, 6.5, 16.0)	2.78 (dd, 6.0, 16.5)
	4 eq.	2.89 (dd, 5.5, 16.0)		3.00 (dd, 5.5, 16.5)	3.02 (dd, 5.0, 16.0)	2.83 (dd, 5.0, 16.5)
	OMe	3.52 (2-A), 3.75 (5-D),	3.58 (2-A), 3.69, 3.77	3.54 (9-D), 3.79 (2-A),	3.57 (9-D), 3.78 ($2-\mathrm{A}$),	3.27 (5-D), 3.78 (4-A),
		3.76 (4-A), $3.83(\times 2)$,	(5-D), 3.81 (4-A),	3.80 (4-A), 3.81, 3.84,	3.79 (4-A), 3.83, 3.85,	3.80 (2-A), $3.83(\times 2)$,
		$3.84,3.85$, each s	$3.82,3.83,3.84$, each s	$3.87(\times 2)$, each s	$3.87,3.88$, each s	$3.84,3.85$, each s
	OAc	1.66, 1.86, each s	1.66, 1.68, each s	1.71, 1.90, each s	$1.71,1.95$, each s	$1.71,1.95$, each s

${ }^{a}$ Identified by spin decoupling using the adjacent benzylic proton resonance as reference signal. ${ }^{b}$ Peaks may be interchanged.
$J_{9,10} 6.0 \mathrm{~Hz}$). Association of $2-\mathrm{OMe}(\mathrm{A})$ with $3-\mathrm{H}(\mathrm{A})(16.8 \%)$ and of $4-\mathrm{OMe}(\mathrm{A})$ with both $3-\mathrm{H}(\mathrm{A})(4.7 \%)$ and $5-\mathrm{H}(\mathrm{A})(9.5 \%)$ indicated that both hydroxy groups of the resorcinol moiety are available for methylation in contrast to involvement of the equivalent of one of these in the heterocyclic c-ring of the $(-)$ -fisetinidol- $(4 \alpha, 8)-(+)$-catechin precursor (1). The heterocyclic region of the ${ }^{1} \mathrm{H}$ n.m.r. spectra (Table) indicated significant and consistent reversals of chemical shifts of benzylic c-ring protons in all four analogues, e.g. (10), in comparison to those of the corresponding 2 - and 4 -proton resonances (c-ring) in $(4,6)$ - and (4,8)-biflavanoids of both 2,3-trans-3,4-trans- and 3,4-cis stereochemistry. ${ }^{4}$ The chemical shift for $6-\mathrm{H}(\mathrm{D})(\delta 6.17)$ in (10) is in agreement with coupling at $8-\mathrm{C}$ of a $(+)$-catechin moiety ${ }^{7}\left(J_{2,3}\right.$ 7.0 Hz) and thus indicative of the tetrahydropyrano[2,3$h]$ chromene arrangement (10). Such an allocation was substantiated by n.O.e. associations of $10-\mathrm{H}(\mathrm{C})$ with $2-\mathrm{H}(\mathrm{E})(1.5 \%)$, $6-\mathrm{H}(\mathrm{E})(2.0 \%)$, and $3-\mathrm{OMe}(\mathrm{E})(0.2 \%)$ and eventually confirmed by synthesis (see below). A similar strategy was adopted in assigning the structures of the remaining isomers (13), (15), and (20).

Differentiation between the regioisomeric phlobatannins, e.g. (10) and (20), on the basis of the absolute chemical shifts of residual D-ring protons ${ }^{7}$ and by observation of n.O.e. effects between this hydrogen and methoxy protons of ring D appear to be less useful than for conventional $(4,6)$ - and $(4,8)$-biflavanoids. These difficulties prompted recourse to synthesis in order to establish unequivocally the structures of the series of novel tetrahydropyranochromenes.

Thus, treatment of $(-)$-fisetinidol- $(4 \alpha, 8)-(+)$-catechin (1) with $0.025 \mathrm{~m} \mathrm{NaHCO}_{3}-0.025 \mathrm{~m} \mathrm{Na}_{2} \mathrm{CO}_{3}$ buffer $(\mathrm{pH} \mathrm{10})^{8}$ for 5 h at $50^{\circ} \mathrm{C}$ under nitrogen, i.e. conditions similar to those applied by Freudenberg ${ }^{9}$ for epimerization at $2-\mathrm{C}$ of $(+)$-catechin, gave a complex mixture from which five products (9), (12), (14), (17), and (19) were obtained (Scheme 1). The expected 8,9-trans-9,10-cis-tetrahydropyrano[2,3-h]chromene (9) $\left[J_{2,3(\mathrm{~F})} 7.0 \mathrm{~Hz}\right.$ for (10)] is accompanied by its $\mathrm{C}-2(\mathrm{~F})$ epimer (12) $\left[J_{2,3(\mathrm{~F})} c a .1 .0 \mathrm{~Hz}\right.$
for (13)]; a corresponding isomeric pair which have tentatively (see below) been assigned structures (14) and (17), their formation implying the equivalent of positional isomerization of the $(-)$-fisetinidol unit to $6-\mathrm{C}$ of the $(+)$-catechin moiety followed by ring isomerization involving its $5-\mathrm{OH}$ function and also epimerization at $2-C(F)\left[J_{2,3(F)} 8.0 \mathrm{~Hz}\right.$ for (15) and ca. 1.0 Hz for (18)] and, finally their structural isomer (19) indicative of the alternative mode of cyclization via $7-\mathrm{OH}(\mathrm{D})$. Differentiation of the heptamethyl ether diacetates (10), (13), (15), (18), and (20) presented problems similar to those encountered for the natural product derivatives. The structures of the pairs (10) and (13), and (15) and (18) followed tentatively from the general congruence of chemical shifts of heterocyclic c-ring proton resonances. $[(10)$ and $(13): \delta 4.96,4.96(8-H), 5.50,5.51(9-H)$, $5.08,5.04(10-\mathrm{H}) ;(15)$ and (18): $\delta 4.95,4.95(8-\mathrm{H}), 5.31,5.34(9-$ $H), 5.06,5.08(10-H)]$. In addition $2-H(F)$ is shielded $(\delta 4.63)$ in (10) relative to the same protons in the corresponding derivatives of (14) ($\delta 4.96$) and (17) ($\delta 5.04$) presumably reflecting the anisotropic effect of its A-ring.

Formation of the series of tetrahydropyranochromenes from a single biflavanoid under mild basic conditions necessitates mechanistic explanations for both c-ring isomerization and the observed migrations and epimerizations (Scheme 2). Substitution of resorcinol A-ring by phloroglucinol D-ring functionality presumably occurs via a B-ring quinone-methide ${ }^{10}$ (23). Recyclization involving $7-\mathrm{OH}(\mathrm{D})$ requires rotation about the $C(3)-C(4)$ bond which will invariably lead from the 3,4-trans to the 3,4 -cis configuration. Dreiding models indicate preference for Re face attack in the quinone-methide (23) and thus for retention of absolute configuration at $2-\mathrm{C}(\mathrm{C})^{*}$ for biflavanoids with 3,4-trans stereochemistry, e.g. (1) and (5). Under the prescribed conditions positional isomerization may proceed via an A-ring derived quinone-methide [arrangement (22)] as was

[^1]
(19) $R^{1}=R^{2}=R^{3}=H$
(20) $R^{1}=R^{3}=M e, \quad R^{2}=A c$
(21) $\quad R^{1}=R^{2}=H, \quad R^{3}=M e$

Scheme 1. Base-catalysed formation of the series of phlobatannins from the $(-)$-fisetinidol- $(4 \alpha, 8)-(+)$-catechin (1); Reagents and conditions: i, $\mathrm{NaHCO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3}, 50^{\circ} \mathrm{C}, 5 \mathrm{~h}, \mathrm{~N}_{2}$

(22)

(1)

(24)

Scheme 2. Proposed route to the formation of phlobatannins and the origin of a 'migrating' flavanyl moiety
initially postulated by Whalley ${ }^{10-12}$ in the biosynthesis of dracorubins and recently also by Hemingway ${ }^{13-15}$ for interflavanyl condensations under alkaline conditions. Such an intermediate (22) would then be susceptible to 1,6 -Michael addition from $6-\mathrm{C}$ of the liberated (+)-catechin moiety.* Alternatively a quinone-methide (24) derived from the e-ring could undergo rotation about the $\mathrm{C}(3)-\mathrm{C}(4)$ bond and recyclization via either $5-\mathrm{OH}(\mathrm{D})$ or $7-\mathrm{OH}(\mathrm{D})$ thus simultaneously achieving the observed regio- and configurational isomerizations. In view of the relative stability of the interflavanyl bond in profisetinidins of type (1) the latter mechanism presumably provides more reasonable explanation for the phenomena of migration and epimerization. The natural existence of the 8,9-trans-9,10-cis-tetrahydropyrano[2,3-h]chromene (12) with its (+)-epicatechin flavan-3-ol unit presumably indicates operation of a similar mechanism in Nature.

The above failure \dagger to provide unambiguous synthetic proof for the structures of the naturally occurring phlobatannins prompted us to embark on a strategy of selectively protecting the C-4(B) hydroxy group of (+)-catechin prior to its utilization in the synthesis of the series of $(4,6)$ - and $(4,8)-(-)$-fisetinidol-$(+)$-catechin mono- O-methyl ethers (2), (4), (6), and (8) in order to prevent unwanted reactions associated with an E-ring quinone-methide of type (24). Methylation of (+)-catechin with methyl iodide ($1: 1$ molar ratio) in anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}-$ acetone afforded a $1: 1$ mixture of the $3^{\prime}-O$ - and $4^{\prime}-O$-methyl ethers. Acid-catalysed condensation of the latter with $(+)$ mollisacadidin ${ }^{4}$ and subsequent chromatography on Sephadex LH-20 and Fractogel TSK HW-40 (S) ${ }^{16}$ afforded the four 'protected' (-)-fisetinidol-(+)-catechins (2), (4), (6), and (8). These dimers were characterized by comparison of ${ }^{1} \mathrm{H}$ n.m.r. data of their hexamethyl ether diacetates with those of the permethyl ether diacetates of the corresponding phenols ${ }^{4}$.

Treatment of the $(-)$-fisetinidol- $(4 x, 8)-(+)$-catechin O-methyl ether (2) with base (pH 10) as above followed by chromatography on Sephadex LH-20 gave the 8,9-trans-9,10-cistetrahydropyrano $[2,3-h]$ chromene (11) $\left({ }^{1} \mathrm{H}\right.$ n.m.r. data in Table) in 58% yield. Comparison of the physical data of its methyl ether diacetate (10) with those of the corresponding derivative of the product from Nature and from the "uncontrolled' synthesis proved their identity. Phlobatannin (11) resulting from stereospecific ring isomerization with retention of the configuration at C-2 in (2), is accompanied by small amounts of a dehydro-(-)-fisetinidol-(+)-catechin (25) $[\delta 6.19$, $\mathrm{s}, 6-\mathrm{H}(\mathrm{B}) ; 6.82, \mathrm{~s}, 3-\mathrm{H}(\mathrm{B})$ for its methyl ether acetate (26)], representing the alternative mode of cyclization via C-6(8) in quinone-methide (23) followed by oxidative removal of hydride

* According to t.l.c. evidence (+ -catechin is indeed released in the reaction mixture.
+ Base treatment of the (- -fisetinidol-($4 \beta, 8$)-(+)-catechin (3) gave an even more complex mixture than the $(4 x, 8)$-isomer. This mixture was not further investigated.
ion. Presence of analogue (25) provides indirect evidence for the proposed quinone-methide mechanism. All efforts to trap intermediate (23) intermolecularly with strong nucleophiles such as phenyl sulphide- and selenide ions invariably failed. Absence of products resulting from a migrating flavanyl moiety in the protected biflavanoid (2) thus confirms our conjecture regarding the mechanism of such a migration in the 'uncontrolled' synthesis.

Base treatment of the (-)-fisetinidol- $(4 x, 6)-(+)$-catechin O methyl ether (6) afforded the expected products of stereospecific c-ring isomerization with retention of the absolute configuration at C -2, i.e. the 6,7-trans-7,8-cis-tetrahydropy-rano[2,3-f]chromene (16) [$J_{6.7} 10.0, J_{7,8} 5.5 \mathrm{~Hz}$ for heptamethyl ether diacetate (15)] and the [2,3-g] regioisomer (21) [$J_{7.8} 10.5, J_{6,7} 6.0 \mathrm{~Hz}$ for (20)] as minor component. Significant n.O.e. associations between $10-\mathrm{H}(\mathrm{D})(\delta 6.11)$ and 9-OMe(D) ($\delta 3$, $54,15.2 \%$) in the [$2,3-f$]chromene (15) and absence of similar associations with $5-\mathrm{OMe}(\mathrm{D})(\delta 3.27)$ in the $[2,3-g]$ isomer (20) clearly differentiates these regioisomers. ${ }^{1}$ H N.m.r. data (Table) of the heptamethyl ether diacetates (15) and (20) proved to be identical with those of the corresponding derivatives of the natural products. The notable preference for ring isomerization involving $5-\mathrm{OH}(\mathrm{D})$ cannot be explained satisfactorily at present.

The natural and synthetic phlobatannin derivatives (10), (13), (15), and (20) all exhibit intense positive Cotton effects in the $220-240 \mathrm{~nm}$ region of their c.d. spectra thus corresponding to $10 S$ absolute configuration for (10) and (13), $8 S$ for (15), and $6 S$ for (20) by application of the aromatic quadrant rule. ${ }^{17}$ These data, when taken in conjunction with ${ }^{1} \mathrm{H}$ n.m.r. coupling constants of heterocyclic protons and known absolute configurations of the biflavanoids (2) and (6), define the absolute stereochemistry as $2 R, 3 S: 8 R, 9 S, 10 S$ for (9), $2 S$, $3 S: 8 R, 9 S, 10 S$ for (12), $2 R, 3 S: 6 R, 7 S, 8 S$ for (14), and $2 R$, $3 S: 6 S, 7 S, 8 R$ for (19). Our strategy of protecting the $4^{\prime}-\mathrm{OH}$ function of the $(+)$-catechin unit to prevent base-catalysed transformations associated with quinone-methides of type (24) and also the systematic synthesis of the full complement of phlobatannins derived from a specific group of (-)-fisetinidol-$(+)$-catechins, e.g. (2) and (6), proved to be of prime importance in establishing the structures of the naturally occurring analogues. Furthermore, we have developed an efficient method of inducing ring isomerization in biflavanoid units present in commercially-available condensed tannins, our ultimate aim being their activation for use in 'cold-set' adhesive applications through 'liberation' of reactive nucleophilic resorcinol units.

Experimental

${ }^{1}$ H N.m.r. spectra were recorded on a Bruker AM-300 spectrometer in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Mass spectra were obtained with a Kratos MS80 instrument and c.d. data in methanol on a Jasco J-20 spectropolarimeter. T.l.c. was performed on pre-coated Merck plastic sheets (silica gel 60 $\mathrm{PF}_{254}, 0.25 \mathrm{~mm}$) and the plates sprayed with $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HCHO}$ ($40: 1 \mathrm{v} / \mathrm{v}$) after development. Preparative plates (p.l.c.), 20×20 cm , Kieselgel $\mathrm{PF}_{254}(1.0 \mathrm{~mm})$ were air-dried and used without prior activation. Separations on Sephadex LH-20 and Fractogel TSK HW-40(S) were on various column sizes and at differing flow rates (to be specified in each instance) in ethanol. Methylations were performed with an excess of diazomethane in methanol-diethyl ether over 48 h at $-15^{\circ} \mathrm{C}$, while acetylations were in acetic anhydride-pyridine at ambient temperatures. Evaporations were done under reduced pressure at $c a .60^{\circ} \mathrm{C}$ in a rotary evaporator.

Phlobatannins from Guibourtia coleosperma.-Heartwood drillings (6 kg) were slightly moisturized and extracted with

EtOAc (3×3 1) at room temperature. Evaporation of the solvent afforded a light-brown powder (240 g) which was dissolved in methanol and dewaxed with hexane ($3 \times 300 \mathrm{ml}$). Evaporation of the methanol solution gave a brown powder $(210 \mathrm{~g})$. This $(4 \times 50 \mathrm{~g})$ was partitioned between a butan-2-ol-water-hexane ($4: 5: 1, \mathrm{v} / \mathrm{v}$) mixture in a 20 -tube, 100 ml underphase, Craig countercurrent assembly.

Following qualitative paper chromatographic analysis the fractions were combined as follows: 1 [tubes $1-8(72.5 \mathrm{~g})$], 2 [tubes 9-14 (62.4 g)], and 3 [tubes 15-20, (60.5 g)]. Subsequent column chromatography (Sephadex LH-20) of fraction 2 in three portions of 20 g each on columns of 5×150 cm (24 ml eluant/tube) afforded the following fractions (first 1.5 1 of eluant was discarded): 2A [tubes 8-28 (0.5 g)], 2B [55-75 $(1.2 \mathrm{~g})], 2 \mathrm{C}[83-120(3.3 \mathrm{~g})], 2 \mathrm{D}[138-186(2.54 \mathrm{~g})], 2 \mathrm{E}[187-$ $306(10.89 \mathrm{~g})], 2 \mathrm{~F}[307-420(5.19 \mathrm{~g})]$, 2G [421-468(4.49 g)], and $2 \mathrm{H}[468-600(15.3 \mathrm{~g})]$. Since the phlobatannins all exhibit a characteristic purple-red colouration on t.l.c. with the spray reagent, fractions for further investigations were selected according to this phenomenon.

Methylation of fraction 2D (2.54 g) and subsequent purification by p.l.c. [benzene-acetone $(9: 1, \mathrm{v} / \mathrm{v}, \times 3)$] gave five bands, 2D $1_{1}\left(R_{\mathrm{F}} 0.5,152 \mathrm{mg}\right), 2 \mathrm{D}_{2}\left(R_{\mathrm{F}} 0.42,69 \mathrm{mg}\right), 2 \mathrm{D}_{3}$ ($R_{\mathrm{F}} 0.33,120 \mathrm{mg}$), 2D ${ }_{4}\left(R_{\mathrm{F}} 0.23,630 \mathrm{mg}\right)$, and 2D $\mathrm{D}_{5}\left(R_{\mathrm{F}} 0.20,454\right.$ mg). Fraction $2 \mathrm{D}_{4}$ was acetylated and the mixture resolved by p.l.c. in benzene-acetone ($19: 1, \mathrm{v} / \mathrm{v} ; \times 2$) to give a main band at $R_{\mathrm{F}} 0.23(74 \mathrm{mg})$ which was further resolved by p.l.c. in hexane-acetone-ethyl acetate ($65: 20: 15, \mathrm{v} / \mathrm{v} ; \times 4$) to give a homogenous fraction at $R_{\mathrm{F}} 0.44(39 \mathrm{mg})$.
(2R,3S:8R,9S,10S)-3,9-Diacetoxy-2,8-bis(3,4-dimethoxy-phenyl)-10-(2,4-dimethoxyphenyl)-2,3-trans-8,9-trans-9,10-cis-3,4,9,10-tetrahydro- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano $[2,3-\mathrm{h}]$ chromene (10). The R_{F} 0.44 band afforded the title compound as a white amorphous solid (Found: C, 66.2; H, 6.1. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires C, $66.1 ; \mathrm{H}$, 5.95%); ${ }^{1} \mathrm{H}$ n.m.r. data (Table); c.d. $[\theta]_{286} 0,[\theta]_{279} 4.1 \times 10^{4}$, $[\theta]_{273} 0,[\theta]_{262}-8.3 \times 10^{4},[\theta]_{249} 0,[\theta]_{238} 2.05 \times 10^{5}$, $[\theta]_{228} 0,[\theta]_{214}-3.5 \times 10^{5}$, and $[\theta]_{210} 0$.

The $2 \mathrm{D}_{5}$ fraction consisted mainly of the heptamethyl ether of the (-)-fisetinidol-($4 \beta, 8$)-(+)-catechin (3) by comparison of physical data of its diacetate with those of an authentic specimen. ${ }^{5}$

Fraction 2E from the Sephadex LH-20 column consists of phlobatannins based on (-)-epicatechin, details of which will be published elsewhere. These compounds are accompanied by the (-)-fisetinidol- $(4 x, 8)-(+)$-catechin (1) by chromatographic comparison with an authentic sample. ${ }^{5}$ Fraction 2F (5.19 g) was methylated and the mixture resolved by p.l.c. (benzeneacetone ($8: 2, \mathrm{v} / \mathrm{v} ; \times 2$) into nine bands, $2 \mathrm{~F}_{1}\left(R_{\mathrm{F}} 0.60,130 \mathrm{mg}\right)$, $2 \mathrm{~F}_{2}\left(R_{\mathrm{F}} 0.52,300 \mathrm{mg}\right), 2 \mathrm{~F}_{3}\left(R_{\mathrm{F}} 0.45,286 \mathrm{mg}\right), 2 \mathrm{~F}_{4}\left(R_{\mathrm{F}} 0.41,704\right.$ mg), $2 \mathrm{~F}_{5}\left(R_{\mathrm{F}} 0.34,886 \mathrm{mg}\right), 2 \mathrm{~F}_{6}\left(R_{\mathrm{F}} 0.28,490 \mathrm{mg}\right), 2 \mathrm{~F}_{7}\left(R_{\mathrm{F}} 0.21\right.$, $474 \mathrm{mg}), 2 \mathrm{~F}_{8}\left(R_{\mathrm{F}} 0.14,510 \mathrm{mg}\right)$, and $2 \mathrm{~F}_{9}\left(R_{\mathrm{F}} 0.10,393 \mathrm{mg}\right)$. Fraction $2 \mathrm{~F}_{2}$ consisted mainly of the heptamethyl ether of the (-)-fisetinidol-($4 \beta, 6$)-(+)-catechin (7) and $2 \mathrm{~F}_{3}$ of the same derivative of the ($4 x, 6$)-isomer (5).
The $2 \mathrm{~F}_{4}$ band was subjected to p.l.c. [hexane-acetone-ethyl acetate $(5: 3: 2, \mathrm{v} / \mathrm{v} ; \times 3)]$ to give a main band at $R_{\mathrm{F}} 0.52$ $(267 \mathrm{mg})$ which was further purified by p.l.c. [1,2-dichloro-ethane-acetone ($9: 1 \mathrm{v} / \mathrm{v}$)] into a fraction at $R_{\mathrm{F}} 0.47$ (104 mg). This was finally resolved by p.l.c. [hexane-acetone-ethyl acetate ($5.5: 2.5: 2, \mathrm{v} / \mathrm{v})]$ to afford two bands at $R_{\mathrm{F}} 0.50(41 \mathrm{mg})$ and R_{F} 0.46 (18 mg).
(2R,3S:8R,9S,10R)-3,9-Diacetoxy-2,8-bis(3,4-dimethoxy-phenyl)-10-(2,4-dimethoxyphenyl)-2,3-trans-8,9-trans-9,10-trans-3,4,9,10-tetrahydro- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano $[2,3 \mathrm{~h}]$ chromene. Acetylation of the $R_{\mathrm{F}} 0.50$ band gave the title compound as a white amorphous solid, details of which will be presented in Part 4 of this series.
(2R,3S:6S,7S,8R)-3,7-Diacetoxy-2,8-bis(3,4-dimethoxy-
phenyl)-6-(2,4-dimethoxyphenyl)-2,3-trans-6,7-cis-7,8-trans-3,4,6,7-tetrahydro- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano $[2,3-\mathrm{g}]$ chromene (20). Acetylation of the $R_{\mathrm{F}} 0.46$ fraction afforded the title compound as a white amorphous solid (Found: $M^{+}, 744.2738 . \mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $M, 744.2782$); ${ }^{1} \mathrm{H}$ n.m.r. data (Table); c.d. $[\theta]_{283} 0$, $[\theta]_{248} 1.86 \times 10^{4},[\theta]_{233} 2.42 \times 10^{5}$, and $[\theta]_{220} 0$.

The $2 \mathrm{~F}_{5}$ band was purified by successive p.l.c. in hexaneacetone ethyl acetate ($5: 3: 2, \mathrm{v} / \mathrm{v} ; \times 4, R_{\mathrm{F}} 0.54,79 \mathrm{mg}$) and in 1,2-dichloroethane-acetone ($8.5: 1.5, \mathrm{v} / \mathrm{v} ; \times 3$) to give a homogenous methyl ether band at $R_{\mathrm{F}} 0.43(25 \mathrm{mg})$. Acetylation followed by p.l.c. in 1,2 -dichloroethane-acetone ($9: 1, \mathrm{v} / \mathrm{v} ; \times 2$) afforded a single band at $R_{\mathrm{F}} 0.63(18 \mathrm{mg})$ which consisted of the ($2 \mathrm{R}, 3 \mathrm{~S}: 6 \mathrm{~S}, 7 \mathrm{~S}, 8 \mathrm{R}$)-3,7-diacetoxy-2,6-bis(3,4-dimethoxyphenyl)-8-(2,4-dimethoxyphenyl)-2,3-trans-6,7-cis-7,8-trans-3,4,7,8-tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$-pyrano $[2,3-\mathrm{f}]$ chromene, details of which will be given in Part 4 of this series

Phlobatannins from Baikiaea plurijuga.-Heartwood drillings $(4.3 \mathrm{~kg})$ were extracted with methanol $(6 \times 2.5$ i) for 48 h at room temperature. The extract was concentrated (ca. 21), dewaxed with hexane (7×11), and the methanol evaporated to give a red-brown powder (582 g). A portion ($2 \times 75 \mathrm{~g}$) of this was subjected to countercurrent distribution (Quickfit Steady State Model 20, 25 ml underphase, 103 tubes) in water-butan-2-ol-hexane ($5: 4: 1, \mathrm{v} / \mathrm{v}$). Following paper-chromatographic analysis the fractions were combined as follows: 1 [tubes 1-23 $(27.9 \mathrm{~g})], 2[24-38(23.7 \mathrm{~g})], 3[39-63(36.1 \mathrm{~g})], 4[64-77$ $(10.3 \mathrm{~g})]$, and $5[78-103(4.7 \mathrm{~g})]$

Subsequent column chromatography (Sephadex LH-20) of fraction 3 in two portions of 18 g each on columns of 4.5×120 cm (18 ml eluant/tube) afforded the following fractions (first 11 of eluant was discarded): 3A [tubes 32-47 (448 mg)], 3B [48$84(2.93 \mathrm{~g})], 3 \mathrm{C}[85-94(318 \mathrm{mg})], 3 \mathrm{D}[95-120(137 \mathrm{mg})], 3 \mathrm{E}$ [121-154 (187 mg)], 3F [155-215 (1.91 g)], 3G [224-267 $(3.08 \mathrm{~g})], 3 \mathrm{H}[268-337(2.64 \mathrm{~g})]$, $3 \mathrm{I}[338-436(2.79 \mathrm{~g})], 3 \mathrm{~J}$ $[437-593(3.21 \mathrm{~g})], 3 \mathrm{~K}[594-633(2,53 \mathrm{~g})], 3 \mathrm{~L}[634-685$ $(1.17 \mathrm{~g})], 3 \mathrm{M}[686-786(2.34 \mathrm{~g})], 3 \mathrm{~N}[787-907(2.61 \mathrm{~g})], 3 \mathrm{O}$ [908-1062 (2.57 g$)]$, and 3P [1 063-1 $313(1.95 \mathrm{~g})]$. Fraction 3G (3.08 g) contained metabolites exhibiting the diagnostic purple-red colouration with the spray reagent on t.l.c. and was further resolved on a Fractogel TSK HW-40(S) column (3×55 $\mathrm{cm}, 15 \mathrm{ml}$ eluant $/$ tube, first 500 ml of eluant discarded) to the following fractions: $3 \mathrm{G}_{1}$ [tubes $\left.84-101(497 \mathrm{mg})\right], 3 \mathrm{G}_{2}[102-$ $121(876 \mathrm{mg})], 3 \mathrm{G}_{3}[122-161(554 \mathrm{mg})], 3 \mathrm{G}_{4}[162-216(534$ $\mathrm{mg})], 3 \mathrm{G}_{5}[217-296(147 \mathrm{mg})]$, and $3 \mathrm{G}_{6}[297-350(33 \mathrm{mg})]$.

Fraction $3 G_{1}(497 \mathrm{mg})$ was methylated and the mixture resolved by p.l.c. [benzene-ethyl acetate-acetone (7:2:1, v/v; $\times 2$) to give a main band at $R_{\mathrm{F}} 0.43(189 \mathrm{mg})$. Acetylation afforded the 8,9-trans-9,10-cis-tetrahydropyrano[2,3-h]chromene (10) identical with the sample from G. coleosperma.

Methylation of fraction $3 \mathrm{G}_{2}(876 \mathrm{mg})$ and subsequent purification by p.l.c. [benzene-ethyl acetate-acetone ($7: 2: 1$, $\mathrm{v} / \mathrm{v} ; \times 2$)] afforded a $R_{\mathrm{F}} 0.46$ band (126 mg) which was further resolved by p.l.c. in chloroform ethyl acetate ($17: 3$. v/v; $\times 2$) to give a homogeneous band at $R_{\mathrm{F}} 0.36(32 \mathrm{mg})$. Acetylation afforded ($2 R, 3 S: 8 S, 9 S, 10 R$)-3,9-diacetoxy-2,10-bis(3,4-dimeth-oxyphenyl)-8-dimethoxyphenyl-2,3-trans-8,9-cis-9,10-trans-3,4,9,10-tetrahydro- $2 H, 8 H$-pyrano[2,3-h] chromene as a white amorphous solid (36 mg). Its identification will be described in Part 4 of this series.

Fraction $3 \mathrm{G}_{3}$ (554 mg) was methylated and the mixture subsequently resolved by successive p.l.c. separation [benzeneethyl acetate-acetone ($7: 2: 1, \mathrm{v} / \mathrm{v} ; \times 2, R_{\mathrm{F}} 0.63,66 \mathrm{mg}$)] ; hexane-acetone-ethyl acetate ($11: 6: 3, \mathrm{v} / \mathrm{v} ; \times 2, R_{\mathrm{F}} 0.39,14 \mathrm{mg}$).
(2S,3S:8R,9S,10S)-3,9-Diacetoxy-2,8-bis(3,4-dimethoxyphen$y l)$-10-(2,4-dimethoxyphenyl)-2,3-cis-8,9-trans-9,10-cis-3,4,9,10-tetrahydro- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano $[2,3-\mathrm{h}]$ chromene (13). Acetylation of the $R_{\mathrm{F}} 0.39$ methyl ether band afforded the title compound as a
white amorphous solid (Found: M^{+}, 744.2759. $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $M, 744.2782$; ${ }^{1} \mathrm{H}$ n.m.r. data (Table), c.d. $[\theta]_{270} 0$, $[\theta]_{264}-3.1 \times 10^{4},[\theta]_{248} 0,[\theta]_{227} 5.4 \times 10^{4}$, and $[\theta]_{222}$ 4.6×10^{5}.

A portion $(1.8 \mathrm{~g})$ of fraction 3 H was chromatographed on Fractogel TSK HW-40(S) $(3 \times 90 \mathrm{~cm}$ column, 15 ml eluant/tube, first 250 ml of eluant discarded) to give the following fractions: $3 \mathrm{H}_{1}$ tubes [$\left.44-63(172 \mathrm{mg})\right], 3 \mathrm{H}_{2}[64-77(342 \mathrm{mg})]$, and $3 \mathrm{H}_{3}[78-125(638 \mathrm{mg})]$. Fraction $3 \mathrm{H}_{1}(172 \mathrm{mg})$ was methylated and the mixture resolved by p.l.c. [benzene-acetone $(9: 1, \mathrm{v} / \mathrm{v} ; \times 3)]$ to give a methyl ether band at $R_{\mathrm{F}} 0.53(16 \mathrm{mg})$. Acetylation afforded ($2 R, 3 S: 8 R, 9 S, 10 R$)-3,9-diacetoxy-2,10-bis(3,4-dimethoxyphenyl)-8-(2,4-dimethoxyphenyl)-2,3-trans-8,9-trans-9,10-trans-3,4,9,10-tetrahydro-2 $\mathrm{H}, 8 \mathrm{H}$-pyrano[2,3-
$h]$ chromene as a white amorphous solid, details of which will be presented in Part 4 of this series. Fraction $3 \mathrm{H}_{3}$ consisted of the ($4 \alpha, 8$)- and ($4 \beta, 8$)-biflavanoids (1) and (3) by t.l.c.- and 2D-paper chromatographic comparisons with authentic samples. ${ }^{5}$ The (4,6)-isomers (5) and (7) were similarly identified in fraction 3I from the Sephadex LH-20 fractionation.

Synthesis of Phlobatannins with trans-cis-Configuration of their

 c-Rings'Uncontrolled' Synthesis.-The (-)-fisetinidol-($4 \alpha, 8$)-(+)catechin (1) $(450 \mathrm{mg})$ was dissolved in 200 ml of a 0.025 m $\mathrm{Na}_{2} \mathrm{CO}_{3}-0.025 \mathrm{~m} \mathrm{NaHCO} 3$ buffer (pH 10) and the mixture stirred under N_{2} at $50^{\circ} \mathrm{C}$ for 5 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, acidified with 0.1 m HCl , and extracted with ethyl acetate $(4 \times 250 \mathrm{ml})$. Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the extract followed by evaporation of solvent afforded a light-brown powder (390 mg). A portion (300 mg) of this mixture was methylated and subsequently resolved by p.l.c. [benzene-acetone (8.5:1.5, v/v; $\times 2)$] into five bands: $1\left(R_{\mathrm{F}} 0.56,21 \mathrm{mg}\right), 2\left(R_{\mathrm{F}} 0.49,26 \mathrm{mg}\right), 3\left(R_{\mathrm{F}}\right.$ $0.41,45 \mathrm{mg}), 4\left(R_{\mathrm{F}} 0.27,23 \mathrm{mg}\right)$, and $5\left(R_{\mathrm{F}} 0.17,30 \mathrm{mg}\right)$.

Acetylation of band 1 followed by successive p.l.c. separation [benzene-acetone ($9: 1, \mathrm{v} / \mathrm{v} ; \times 2$], $R_{\mathrm{F}} 0.42,13 \mathrm{mg}$); hexane-acetone-ethyl acetate ($13: 4: 3, \mathrm{v} / \mathrm{v} ; \times 3 ; R_{\mathrm{F}} 0.55,5 \mathrm{mg}$) afforded ($2 S, 3 S: 6 R, 7 S, 8 S$)-3,7-diacetoxy-2,6-bis(3,4-dimethoxyphenyl)-8-(2,4-dimethoxyphenyl)-2,3-cis-6,7-trans-7,8-cis-3,4,7,8-tetrahydro- $2 \mathrm{H}, 6 \mathrm{H}$-pyrano $[2,3-f]$ chromene (18) as a white amorphous solid (Found: $M^{+}, 744.2783 . \mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $M, 744.2782$); ${ }^{1} \mathrm{H}$ n.m.r. data (Table); c.d. $[\theta]_{275} 0,[\theta]_{265}-$ $4.0 \times 10^{4},[\theta]_{246} 0,[\theta]_{228} 1.9 \times 10^{5},[\theta]_{225} 4.5 \times 10^{4},[\theta]_{221}$ 1.4×10^{5}, and $[\theta]_{220} 0$.

Band $2(26 \mathrm{mg})$ was acetylated and purified by p.l.c. [benzeneacetone $(9: 1, \mathrm{v} / \mathrm{v} ; \times 2)]$ to give the 2,3 -cis-8,9-trans- 9,10 -cistetrahydropyrano $[2,3-h]$ chromene (13), $R_{F} 0.45(12 \mathrm{mg})$ as a white amorphous solid, identical (${ }^{1} \mathrm{H}$ n.m.r.-, c.d.-, and ms-data) with the natural product from B. plurijuga.

Acetylation of band $3(45 \mathrm{mg})$ followed by p.l.c. [benzeneacetone ($9: 1, \mathrm{v} / \mathrm{v} ; \times 2$)] afforded two fractions at $R_{\mathrm{F}} 0.54(11 \mathrm{mg})$ and $R_{\mathrm{F}} 0.44$ (15 mg). The $R_{\mathrm{F}} 0.54$ fraction gave ($2 R, 3 S: 6 R, 7 S, 8 S$)-3,7-diacetoxy-2,6-bis(3,4-dimethoxyphenyl)-8-(2,4-dimethoxy-phenyl)-2,3-trans-6,7-trans-7,8-cis-3,4,7,8-tetrahydro-2 $\mathrm{H}, 6 \mathrm{H}$ -pyrano[2,3-f]chromene (15) as a white amorphous solid (Found: $M^{+}, 744.2733 . \mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{13}$ requires $M, 744.2782$); ${ }^{1} \mathrm{H}$ n.m.r. data (Table), c.d. $[\theta]_{271} 0,[\theta]_{261}-2.8 \times 10^{4},[\theta]_{254} 0,[\theta]_{233}$ 4.4×10^{5}, and $[\theta]_{214} 0$. The $R_{F} 0.44$ fraction consisted of the cis-trans-tetrahydropyrano[2,3-h]chromene (10), identical $\left({ }^{1} \mathrm{H}\right.$ n.m.r., c.d., and m.s. data) to the corresponding derivative of the natural product from G. coleosperma and B. plurijuga.

Acetylation of band $4(23 \mathrm{mg})$ followed by p.l.c. [benzeneacetone $(9: 1, \mathrm{v} / \mathrm{v} ; \times 2)]$ gave the 7,8 -trans- 6,7 -cis-tetrahydro-pyrano[2,3-g]chromene (20), $R_{\mathrm{F}} 0.53(11 \mathrm{mg})$, identical with the corresponding derivative of the natural product from G. coleosperma.

Band 5 (30 mg) consisted of unchanged starting material.
'Controlled' Synthesis.-Selective methylation of (+)-cate-
chin. Dry $(+)$-catechin ($2 \times 10 \mathrm{~g}$ portions) was dissolved in dry acetone (200 ml) containing anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(23.8 \mathrm{~g}$) and methyl iodide (5.88 g). The mixture was refluxed for 36 h , filtered, evaporated to dryness, and the residue subjected to column chromatography (Sephadex LH-20, $5 \times 150 \mathrm{~cm}$ column, 24 ml eluant/tube, first 1.51 of eluant discarded). The following fractions were gathered: 1 [tubes 5-38 (600 mg)], 2 [39-85 (8.5 g)], and 3 [85-120 (9.0 g)]. Fraction 1 consisted of di, tri-, and tetra- O-methyl ethers and fraction 3 of unchanged $(+)$-catechin. Fraction 2 contained a mixture of the $3^{\prime}-O$ - and 4^{\prime} -O-methyl ethers and was subsequently dissolved in methanolchloroform ($3: 1, \mathrm{v} / \mathrm{v}$) which led to selective crystallization of 4^{\prime} -O-methyl-(+)-catechin as white solid (4.0 g), m.p. $228.4^{\circ} \mathrm{C}$, lit. ${ }^{18}$ m.p. $228-230^{\circ} \mathrm{C}$ (Found: $M^{+}, 304.0941$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{6} M^{+}, 304.0947$).

Synthesis of 'protected' biflavanoids (2), (4), (6), and (8). 4'-O-Methyl- $(+)$-catechin (4.0 g) was dissolved in $0.1 \mathrm{M} \mathrm{HCl}(500 \mathrm{ml})$ containing ethanol (20 ml) to which a solution of $(+)$ mollisacacidin $(2 \mathrm{~g})$ in $0.1 \mathrm{M} \mathrm{HCl}(100 \mathrm{ml})$ was added slowly ($c a$. 3 h) with stirring at ambient temperature. After 12 h a further portion of $(+)$-mollisacacidin (1 g) in $0.1 \mathrm{~m} \mathrm{HCl}(50 \mathrm{ml})$ was added and stirring continued for 12 h . The mixture was extracted with ethyl acetate ($4 \times 250 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to dryness. The light-brown residue (7 g) was subjected to column chromatography on a Büchi MPLCsystem ($5 \times 150 \mathrm{~cm}$ column, $0.6-0.8$ bar pressure, flow rate- 8 $\mathrm{ml} / \mathrm{min}, 24 \mathrm{ml}$ eluant $/$ tube, first 1.51 of eluant discarded) using Sephadex LH-20/ethanol to give the following fractions: 1 [tubes $3-18(1.54 \mathrm{~g})], 2[36-61(1.44 \mathrm{~g})], 3[73-110(1.96 \mathrm{~g})]$, $4[120-146(250 \mathrm{mg})]$, and $5[205-234(708 \mathrm{mg})]$. Fraction 1 consisted of $4^{\prime}-O$-methyl- $(+)$-catechin, fraction 2 of the $(-)$ -fisetinidol-(4 $\beta, 8)-(+)$-catechin- O-methyl ether (4), fraction 3 of the $(4 x, 8)$-dimer (2), fraction 4 of the $(4 \beta, 6)$-biflavanoid (8), and fraction 5 of a mixture of the ($4 \alpha, 6$)-analogue (6) and small amounts of 'trimeric' species. The latter mixture was resolved by column chromatography on Fractogel TSK HW-40(S)/ethanol under m.p.l.c. conditions ($3 \times 100 \mathrm{~cm}$ column, 2.7 bar, flow rate $3 \mathrm{ml} / \mathrm{min}, 24 \mathrm{ml}$ eluant $/$ tube, first 250 ml of eluant discarded) to give the $(-)$-fisetinidol- $(4 x, 6)-(+)$-catechin- O-methyl ether (6) [tubes 2-35 (412 mg)] and a trimeric fraction [tubes 40-73 $(380 \mathrm{mg})]$ which was not further investigated. The 'protected' biflavanoids (2), (4), (6), and (8) were characterized by comparison of ${ }^{1} \mathrm{H}$ n.m.r. data of their heptamethyl ether diacetates with those of the corresponding derivatives of authentic samples. ${ }^{5}$

Base-catalysed conversion of (-)-fisetinidol- $(4 x, 8)-(+)$-cate-chin-O-methyl ether (2). The biflavanoid (2) (800 mg) was treated with base as was described above for (1) in the 'uncontrolled' synthesis, and the resulting mixture resolved by column chromatography ($3 \times 85 \mathrm{~cm}$ column, flow rate $1.2 \mathrm{ml} / \mathrm{min}, 20 \mathrm{ml}$ eluant/tube, first 200 ml of eluant discarded) on Sephadex LH-20 to give the following fractions: 1 [tubes $11-17(38 \mathrm{mg})], 2[34-53(280 \mathrm{mg})]$, and $3[54-74(325$ $\mathrm{mg})$].

Fraction $1(38 \mathrm{mg})$ was methylated and the mixture resolved by p.l.c. [benzene-acetone-methanol ($70: 28: 2, \mathrm{v} / \mathrm{v} ; \times 2$)] to give two bands at $R_{\mathrm{F}} 0.70(12 \mathrm{mg})$, $R_{\mathrm{F}} 0.28(5 \mathrm{mg})$. The former consisted of $3^{\prime}, 4^{\prime}, 5,7$-tetra- O-methyl-(+)-catechin. Acetylation of the $R_{\mathrm{F}} 0.28$ band afforded the dehydro-(-)-fisetinidol-(+)-catechin (26) as white amorphous solid (6.4 mg) (Found: $\mathrm{M}^{+}, 728.2458 . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{13}$ requires $M, 728.2469$); ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 23^{\circ} \mathrm{C}\right) \delta 6.81[\mathrm{~d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H}(\mathrm{A})]$, $6.49[\mathrm{dd}, J 2.5,8.5,5-\mathrm{H}(\mathrm{A})], 6.15[\mathrm{~d}, J 8.5,6-\mathrm{H}(\mathrm{A})], 6.19[\mathrm{~s}, 2-$ $\mathrm{H}(\mathrm{B})], 6.82[\mathrm{~s}, 5-\mathrm{H}(\mathrm{B})], 5.17$ [dd, $J 2.5,3.0,2-\mathrm{H}(\mathrm{C})], 6.09$ [dd, J $3.0,3.0,3-\mathrm{H}(\mathrm{C})], 3.36[\mathrm{dd}, J 2.5,3.0,4-\mathrm{H}(\mathrm{C})], 5.61[\mathrm{~s}, 6-\mathrm{H}(\mathrm{D})]$, $6.06[\mathrm{~d}, J 2.0,2-\mathrm{H}(\mathrm{E})], 6.51[\mathrm{~d}, J 8.5,5-\mathrm{H}(\mathrm{E})], 5.88[\mathrm{dd}, J 2.0,8.5$, $6-\mathrm{H}(\mathrm{E})], 4.08[\mathrm{~d}, J 10.0,2-\mathrm{H}(\mathrm{F})], 4.97[\mathrm{~m}, 3-\mathrm{H}(\mathrm{F})], 3.15[\mathrm{dd}, J 6.5$, $\left.17.0,4-\mathrm{H}_{e q .} .(\mathrm{F})\right], 2.36\left[\mathrm{dd}, J 9.5,17.0,4-\mathrm{H}_{a x .}(\mathrm{F})\right], 3.65,3.67,3.72$,
3.73, 3.77, 3.87 (each s, $6 \times \mathrm{OMe}$), 1.80 , and 1.95 (each s, $2 \times \mathrm{OAc})$

A portion (100 mg) of fraction 2 was methylated and the mixture resolved by p.l.c. [benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v} ; \times 2$)] to give a single band at $R_{\mathrm{F}} 0.5(38 \mathrm{mg})$. Acetylation of this material afforded the 8,9-trans-9,10-cis-tetrahydropyrano[2,3-h]chromene (10) with physical data identical with those of the corresponding derivative of the natural product.

A portion (50 mg) of fraction 3 was methylated, the mixture resolved by p.l.c. [benzene-acetone-methanol (90: 9:1, v/v], and the $R_{\mathrm{F}} 0.24$ band (35 mg) acetylated to give the starting material (2).

Base-catalysed conversion of (-)-fisetinidol-($4 \alpha, 6$)-(+)-catechin-O-methyl ether (6). Treatment of biflavanoid (6) (412 mg) with base and work-up as above afforded the phlobatannin mixture as a light-brown amorphous solid (395 mg). This was resolved by column chromatography ($3 \times 85 \mathrm{~cm}$ column, flow rate $1.2 \mathrm{ml} / \mathrm{min}, 20 \mathrm{ml}$ eluant $/$ tube, first 200 ml of eluant discarded) on Sephadex LH-20/ethanol to the following fractions: 1 [tubes $8-29(165 \mathrm{mg})], 2[36-56(86 \mathrm{mg})]$, and 3 [78-99 (27 mg)]. Fraction 3 consisted of unchanged starting material.

Methylation of fraction $1(165 \mathrm{mg})$ followed by p.l.c. [benzene-acetone-methanol ($90: 9: 1, \mathrm{v} / \mathrm{v}$)] afforded a methyl ether band ($R_{\mathrm{F}} 0.28,100 \mathrm{mg}$) which was acetylated to give the 6,7-trans-7,8-cis-tetrahydropyrano[2,3-f]chromene (15), identical with the derivative encountered during the 'uncontrolled' synthesis.

Fraction $2(86 \mathrm{mg})$ was methylated, the mixture resolved by p.l.c. [benzene-acetone ($8: 2, \mathrm{v} / \mathrm{v} ; \times 2$)], and the resulting methyl ether band ($R_{\mathrm{F}} 0.41,34 \mathrm{mg}$) acetylated to afford the 6,7 -cis- 7,8 -trans-tetrahydropyrano[2,3-g]chromene (20), identical with the corresponding derivative of the natural product.

Acknowledgements

Support by the Foundation for Research Development, C.S.I.R., Pretoria, the Sentrale Navorsingsfonds of this University, and the Marketing Committee, Wattle Bark Industry of South Africa, Pietermaritzburg, is acknowledged. Mass spectral
data were supplied by Dr. J. M. Steyn, Department of Pharmacology of this University.

References

1 J. A. Steenkamp, J. P. Steynberg, E. V. Brandt, D. Ferreira, and D. G. Roux, J. Chem. Soc., Chem. Commun., 1985, 1678.
2 J. P. Steynberg, D. A. Young, J. F. W. Burger, D. Ferreira. and D. G. Roux, J. Chem. Soc., Chem. Commun., 1986, 1013.
3 K. C. Palgrave in 'Trees of Southern Africa,' ed. E. J. Moll, C. Struik Publishers, Cape Town, 1983, p. 262.
4 J. J. Botha, D. Ferreira, and D. G. Roux, J. Chem. Soci. Perkin Trans. 1, 1981, 1235.
5 D. A. Young, A. Cronjé, A. L. Botes, D. Ferreira, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1985, 2521.
6 I. C. du Preez, A. C. Rowan, D. G. Roux, and J. Feeney, Chem. Commun., 1971, 315.
7 H. K. L. Hundt and D. G. Roux, J. Chem. Soc., Perkin Trans. I, 1981, 1227.

8 Vogel's Textbook of Quantitative Inorganic Analysis, 4th edn., eds. J. Bassett, R. C. Denney, G. H. Jeffery, and J. Mendham, Longman, London, 1978, Appendix IX.
9 K. Freudenberg and L. Purrmann, Chem. Ber., 1923, 56, 1185 ; Liebigs Ann. Chem., 1924, 437, 274
10 W. B. Whalley in 'The Chemistry of Flavanoid Compounds,' ed. T. A. Geissmann, Pergamon, Oxford, 1962, p. 446.

11 W. B. Whalley in 'Recent Developments in the Chemistry of Natural Phenolic Compounds,' eds. W. D. Ollis and I. O. Sutherland, Pergamon, London, 1961, p. 26.
12 G. Cardillo, L. Merlini, G. Nasini, and P. Salvadori, J. Chem. Soc. C, 1971, 3967.
13 R. W. Hemingway and L. Y. Foo, J. Chem. Soc., Chem. Commun., 1983, 1035.
14 P. E. Laks and R. W. Hemingway, J. Chem. Soc.. Perkin Trans. 1, 1987, 465.
15 P. E. Laks, R. W. Hemingway, and A. H. Conner, J. Chem. Soc., Perkin Trans. 1, 1987, 1875.
16 G. Derdelinckx and J. Jerumanis, J. Chromatogr., 1984, 285, 231, and refs. therein.
17 J. H. van der Westhuizen, D. Ferreira, and D. G. Roux. J. Chem. Soc., Perkin Trans. I, 1981, 1220.
18 G. J. Sweeny and G. A. Iacobucci, J. Org. Chem., 1979, 44, 2298.
Received 7th March 1988; Paper 8/00915E

[^0]: + Part 2, J. C. S. Malan, D. A. Young, J. A. Steenkamp, and D. Ferreira, J. Chem. Soc., Perkin Trans. I, 1988, 2567.
 \ddagger The remaining isomers will be discussed in the following paper.

[^1]: * 8-C(c) In phlobatannin (9).

